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Restrictions on the relaxation functions of heat conduction, which are neces- 
sary and sufficient for the fulfillment of the thermodynamic postulates in a 
linear theory of heat conduction with memory, are obtained. 

i. A renewal of interest in the last two decades in the thermodynamics of complex 
materials has led to a clearer realization that there are insufficient grounds for assuming 
that the usual formulation of the second law of thermodynamics in the form of the Clausius-- 
Duhem inequality is the only one possible. Thus, a series of studies has appeared in which 
various generalizations and modifications of the formulation of the second law are considered 
[1-7]. In this connection, it is important to be able to apply to actual materials those con- 
sequences of thermodynamic theory which would be necessary and sufficient for the fulfillment 
of all of its postulates. Comparison with experiment would allow one to judge the complete- 
ness of the thermodynamic approach being used. Of particular interest here are model materi- 
als with memory because, due to their diverse properties, it is possible to more completely 
see the consequences of a thermodynamic theory in these cases [3, 8-10]. 

In the present paper, in the framework of thermodynamic theories based on the Clausius-- 
Duhem inequality, we obtain the necessary and sufficient conditions of thermodynamic admis- 
sibility for a linear model of heat conduction with memory, i.e., the complete set of re- 
strictions due to the Clausius--Duhem inequality for this case. It is shown that these re- 
strictions do not prohibit wave solutions of the heat-conduction equation with growing amp- 
litudes. Evidently this indicates that the formulation of the second law with the Clausius-- 
Duhem inequality is not complete. 

An attempt to prove a necessary and sufficient restriction on the relaxation functions 
for a linear theory of heat conduction with memory was initiated by us earlier in [ii]. How- 
ever, the result obtained there cannot be considered to be completely satisfactory because 
the sufficiency of the obtained restriction could be proved only when an additional condition 
was applied to the relaxation functions. In any case, this result cannot be considered to be 
the final answer on the search for a complete set of thermodynamic restrictions. In addition, 
it turned out that this additional condition led to serious mathematical difficulties. 

Below we prove the required necessary and sufficient condition for the fulfillment of 
the second law of thermodynamics for a linear model of heat conduction with memory. This can 
be done because we have removed the requirement that the thermodynamic potential be smooth 
in Hilbert space with fading memory from the starting point formulation of the thermodynamic 
theory and replaced this requirement by a weaker assumption. The second law of thermodynam- 
ics is formulated on the basis of the Clausius-Duhem inequality 

n/> - -  d i v  + "8" ( I )  

For the purposes of studying the properties of the relaxation function, it is sufficient 
to consider a linear theory of heat conduction; thus, as independent variables we can use the 
inverse temperature 

---- I /8  (2)  

and its gradient 

@-- v*, (3) 
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since, according to [12], only in this case will the linear thermodynamic theory of heat con- 
duction be correct. 

2. We now formulate the starting point of the theory. The thermodynamic potential 
is introduced by the relation 

= ~ - - e ~ .  (4) 

Then, with the help of the equation of conservation of energy 

= -- d i v e +  r (5) 

and ( 2 ) - ( 4 ) ,  t h e  Claus ius-Ouhem i n e q u a l i t y  (1) can be  t r a n s f o r m e d  to  

r  e ~ - -  ~.G ~ O. (6) 

For simplicity we consider a one-dimensional, linear theory of heat conduction with memory 
given by the following defining equations: 

e(t) e(# (l), a~,(tl) a~r == = eo - -  c@ (t) - -  ( # (s) ~t(s) ds, 

(7) 

q (0 = q ( ~ )  = 1 ~ (s) ~ (s) ds, 
0 

def def 

where  #~(s )=O( l - - s )  i s  t h e  i n v e r s e  t e m p e r a t u r e  h i s t o r y ,  and Gt(s)=G(t--s) i s  t he  g r a d i e n t  of  
the inverse temperature history. These equations are obtained by linearization (in the iso- 
tropic case) of the modified [12] general Gurtin--Pipkin model[13] of heat conduction with a 
finite heat propagation velocity. 

The relaxation functions a and B are bounded and have the following properties: 

Iff(s)l s2ds< oo, i" t=(s)l d s <  co, (8) 
b 

( ~ )  = 0, ~ (co) = 0. 
(9 )  

Let  F be the se t  o f  p i e c e w i s e - c o n t i n u o u s  f u n c t i o n s  on (--~, = ) ,  bounded on any f i n i t e  i n t e r v a l ,  
with a propagator bounded to the left. 

0 d~f d~ C!F, We define an admissible process (at point x) as the pair {~(t), G(t)}, in which = d-~ 

GEF and ~0. This means that for any admissible process there exists a to such that 
O = O0 and G = 0 for all t < to. The combination of propagators ~ and G is called the prop- 
agator of the admissible process. The admissible process with the empty propagator is called 
the equilibrium admissible process. 

Each admissible process (for fixed t) defines a triplet consisting of a number and two 
functions on [0, oo) {~(t), ~t(.), Gt(.)}, .which we call the thermal history. The equilibrium 
thermal history is of the form {O0, ~, 0+}, where @+ (s)=~0, 0+(s) =0 for all s6,[0, co). 

A thermodynamic process is defined as the set of four functions {O(t), G(t), e(t), q(t)}, 
where {O(t), G( 0} define the admissible process and e(t) and q(t) are defined through this 
admissible process with the help of (7).* 

Here we use a thermodynamic postulate which differs from the postulates of the modified 
Gurtin--Pipkin theory in that, instead of assuming the smoothness of the thermodynamic poten- 
tial in a space with fading memory, we use a weaker assumption, and the Clausius--Duhem in- 
equality (6), since r is not assumed to be differentiable, is written in integral form. 

Postulate TD. There exists a thermodynamic potential r defined on the set of thermal 
histories by the functional ~: 

a~Ct) = ~C~ (t), ~', Gt), (10) 

*Any thermodynamic process is consistent with the conservation of energy equation (5) for an 
appropriate choice of the internal heat source. 
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which a) for all thermodynamic processes and any tl, t2~(--oo, oo) satisfies the Clausius--Duhem 
inequality 

tj 

(~ (t,), ~", G")-- �9 (e (tO, ~", a") .<< ] t~ (~ (4), ~)b (4) -5 ~ (a ~) a (4)] d4, (il l  
t ,  

and b) is a minimum in the equilibrium state 
~f 

(~ (t), Or, Gt) ~ ~ (0 (t), ~ (t) +, 0+) = ~* (~ (t)) (12) 

f o r  any the rma l  h i s t o r y  {~(t), ~t, Ot}. 

The f u n c t i o n  ~*(~) ,  d e f i n e d  in  (12), i s  c a l l e d  the  e q u i l i b r i u m  thermodynamic p o t e n t i a l .  

We emphasize that condition (12) on theminimum for the equilibrium thermodynamic poten- 
tial is weaker than the requirement that it be smooth in the space of fading memory because 
when there is fading memory, (12) turns out to be a consequence of the Clausius--Duhem inequal- 
ity (see [13], relations (4) and (8) therein). 

3. We now study the properties of the relaxation functions 8 and ~ derived from the re- 
strictions imposed by postulate TD. We take an arbitrary admissible process and consider in- 
equality (12) from to (where to is the point on the time axis for which the propagator of 
the process lies to the right) to arbitrary t > to: 

t 

~(~(t), ~', ~')-~* (e0)-<< ] [~(~(4), ~)~(4) + $(G~)~(4)] d4. (13) 

The lower l im i t  of integration is extended to--~ because 0 = G=O for t < to. 

Using the properties of the thermodynamic potential given by (12), inequality (13) is 
transformed to 

~)* (~ (t)) - -  (I)* (e0) ~ ~' [e (W} (4), r 6 (4) + q (G T) G (4)] d4. (14) 
- - o 0  

If during the admissible process under consideration the inverse temperature remains constant 
and equal to @0, and only its gradient changesi then from (14), the second of equations (7), 
and a change of variables we obtain 

'i ~ e(4--s)G(s)G(4)dsd4~O (15) 

f o r  any GEF and any t .  

This inequality expresses a property of the relaxation function a imposed by postulate 
TD. Following [14], we call a relaxation function having property (15) dissipative.* 

Below we consider an admissible process in which ~(~) ffi 0 for all T and @(T) 
by the following special form: 

e (4) = 

~'~o for 4 6 (-- ~ ,  to), 

~ o +  ~ i  ~[(s) ds for ~6[to, t], 
to 

~o -5 vll for 4 6 [t, t -5 ~), 

[ 1 ( 4 - - t - - ~ ) j  I, for zEIt+~, t+~+T),  r  1 - - -  T 

~)o for 4 E It + X + t, oo). 

is given 

(16) 

t 

Here [6F, ~>0, T>O, If=S f(s) ds' and the factor ~ > 0 is chosen such that @(T)>0 for all 
to 

r. From the definition of ~(4) in (16), it is clear that {~(4), 0 +} is an admissible pro- 

*In mathematical papers a function satisfying (15) is called a function of positive type. 
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tess. We write (14) with t = t, for this process. From (7), and the boundedness from the 
left of the propagator of f, we can transform this inequality to the following form by a sub- 
stitution of variables, integration by parts, and division by ~: 

~0o --~ t --.~ �9 t ;% t + 2 

where the  integral relaxation function of the internal energy is 

6 ~ (s) - 6 (~.) d~. 
$ 

(18)  

and from the first of equations (8), satisfies 

oo 

,f 16 ~ (s)l sds < ~ .  (19) 
0 

By changing variables and the order of integration we transform the last two integrals 
i n  (17) and o b t a i n  an upper  e s t i m a t e  to  the  second i n t e g r a l :  

O ~ i S 6' ('--s)[(s)'(x)dsdx+ I t  ~ i 6' Ct ~- % "%'--s)[(s)dsdxi- 
T .J 

- - c o  - - 0 ~  0 - - o o  

(20) 

= l__i 
+ ~ 6' (s) ( r - -  ~) ds < ~ j 6' ( ~ -  s) f (~) f (~) ,~sd~ + 1hi (t - -  to) ~ (Z) ~., - -  [ 6 ~ (~ sd~+ r 6 (~) ~ .  

- - o o  - - o o  0 

Here to is a p o i n t  which bounds the propagator of f from the left, ~si(1) is the maximum val- 
ue of the function 8 i on the interval [l, | and ~b is the maximum value of f on the segment 
[t., t]. Because the memory functions are bounded, the two maximum values are finite and 

lira ~tl~i ():) = 0 ,  
(21) 

This follows by definition. 

Taking the limit I + ~ in (20), we see that, according to (21), the second term after 

the last inequality sign goes to zero. 

If we put T + ~, then the two last terms in (20) also go to zero since the first of equa- 
tions (8) is satisfied. After taking these two limits in the above order, we obtain from (20) 

t T 

.I 6' (x-- s) f (s) [ ( x)dsdT >/ O (22) 
- - = o  - - o o  

for any [EF and any t. 

Summarizing the results (15~, (22), we conclude that, in order to satisfy postulate TD, 
the relaxation functions a and fl I must be dissipative. 

4. It can be shown that the requirement that the relaxation functions a and 8 i be dis- 
sipative is not only a necessary but also a sufficient condition for the fulfillment of the 
thermodynamic postulate in a linear theory. In order to prove this, we construct a function- 
al @(O(t),9 t, O t) starting from the dissipative inequalities (15) and (22) and defined for all 
admissible processes and satisfying all of the requirements of postulate TD. Using some 
ideas of Day [3], which were developed for determining the entropy functional for a visco- 
elastic, non-heat-conducting medium, we construct the required functional. 

Let the relaxation functions a and B i be dissipative so that 

t" t '  T 

f o r  any [, g E F .  
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Let F t be the set of functions of F whose propagator is bounded and lies on the inter- 
val [t, ~). For any admissible process {O(.),-G(.)}, any t, and any pair of functions ~, h~Ft 
it is possible to construct a pair of functions f%, g~f as follows: 

h~ (~) ! 

[.~ (T) ~o~ ~ ~ (t, ~), 

6 (x) for x E (-- oo, O, 

geh (x) = Ih (x) for x ~ (t, oo). 

(24) 

Inequality (23) can be written for these functions and, using the fact that both functions 
have bounded propagators, the inequalities can be represented in the form 

] ~ c o  - - o o  

Now f o r  c o n s t a n t  8 ( . )  and G ( . ) ,  l e t  t he  f u n c t i o n s  ~ ( . ) ,  h ( ~  r ange  over  the  e n t i r e  s e t  F. 
The r i g h t - h a n d  s i d e s  o f  bo th  i n e q u a l i t i e s  i n  (25) do no t  change and ,  c o n s e q u e n t l y ,  t he  ex -  
p r e s s i o n s  on the left of these inequalities are bounded below for any ~, h~Ft, But this 
means they also have greatest lower bounds which we will call H e and Hq, respectively: 

.~ oo f t 

3 

oo o0 t 

t 0 - - o o  - -oo  

(26) 

for any ~1, hEFt. 

Fie i s  a f u n c t i o n a l  depending  on ~t--O(t)+,  w h i l e  Hq i s  a f u n c t i o n a l  depending  on G t ,  as  
can easily be seen from the following equations, obtained after simple manipulations of the 
expressions on the left-hand side of (26): 

~e(@t--@(t)+)(~ inf ~(t) ~l(S)~'(x_s)ds-q-.[(@t(s)--@ft))~(s+ x - - t ) d s ] d x } ,  
�9 " q ~ F t  0 

= inI h (t) h (s) ~ ( x - -  s) ds + 6' (s) cz (s + x - -  t) ds] d~}.  
heft "i o 

P u t t i n g  h(T) = n(T) = 0 i n  (26) ,  we f i n d  t h a t  f u n c t i o n a l s  He and Hq s a t i s f y  

In  a d d i t i o n ,  i t  f o l l o w s  from (26) and (28) t h a t  

~,(0+) = 0, ~ (0+) = 0. 

We w r i t e  an i n e q u a l i t y  o f  type  (26) f o r  the  same f u n c t i o n s  f• n and gab 

time t' < t. Splitting the integrals on the left into two, we obtain 

(27) 

(28 )  

(29) 

, but for any 

t oo 

t '  0 t T 

S 6 (z) c~ (s) G (x - -  s) dsdx + I" h (T) gab (r--s) dsdT ~ ~I a (Gr). 
t" "~ ~ o 

(30 )  
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If now both functions h and ~ range over the entire set Ft, then in (29) only the second 
integrals are changed and the inequalities are always satisfied. This means that they are 
satisfied when the integrals are replaced by their greatest lower bounds given by (27). Hence, 

I~ ~ (T) ~. [~i (s) ;b ('c - -  s) dsdT + [--I e (8 t - -  8 (t) +) ~ &.  (8 t" - -  8 (t')+), 
}" o 

t 

.I G (T) j" cz (s) O (T - -  s) dsdT § fiq (O t) ~ l~q (Gt'). 
~" 0 

(31) 

We introduce the notation 

def 
(8 (T), 8 t, G t) = %8 (t) - -  l---- (c + p' (0)) 8 (02 - -  fie ( 8t - -  e(t) +) - -  fi~ (O'). (32) 

Z 

Then combining the two i n e q u a l i t i e s  (31) ,  t ak ing  i n t o  account  (7) and (32) ,  we o b t a i n  

S[j(8(~), 8 D ~ ( ~ ) - F ~ ( O ~ ) 6 ( ~ ) ] d ~ > / ~ ( e ( t ) ,  8 t, G' ) - -~ (8 ( t ' ) ,  8 r 6u). (33) 
t '  

And t h i s  i s  the  Clausius--Duhem i n e q u a l i t y  in  which the  f u n c t i o n a l  ~ de f ined  by r e l a t i o n s  (32) 
and (27) p l ays  the  r o l e  of  a thermodynamic p o t e n t i a l ,  From (32) and (29) we can f i nd  the 
e q u i l i b r i u m  thermodynamic p o t e n t i a l  

�9 * (8) -- �9 (8 ,  8 + ,  0+) = e08 - -  c + ~ (0) 8~. - 2 ( 3 4 )  

Then from (28)and (32) and (34) it follows from postulate TD that the functional ~ constructed 
above be a minimum in the equilibrium state. Hence, this functional, together with the defin- 
ing equations (7), satisfy all of the requirements of postulate TD, and this means that the 
dissipative property of the relaxation functions B i and ~ on which the construction of ~ is 
based, is sufficient for the fulfillment of this postulate. 

The results of Secs. 2 and 3 can be summarized in the form of a theorem. 

THEOREM i. The thermodynamic postulate TD is satisfied for a medium defined by (7) if 
and only if the integral relaxation function for the internal energy 8 i and relaxation func- 
tion for the heat flux a are dissipative. 

We note that, according to [Ii, 14], the requirement that the relaxation functions be 
dissipative is equivalent to the requirement 

_, def ~[~ de, i 
0 %f~Bo)  = , (s)cos(osds, O C ( z o ( ( o ) =  o:(s)coso)sds (35) 

0 0 

for any m>10. Therefore, the following lemma to Theorem I is true. 

LEMMA. Condition (35) is necessary and sufficient to satisfy postulate TD. 

5. The above theorem contains a complete set of thermodynamic restrictions from the 
Clausius--Duhem inequality in the case of the heat-conduction model with memory considered 
here; therefore, one can study whether these restrictions completely exclude unphysical 
situations. In order to do this, we substitute (7) into the energy equation (5) for r = 0 
and obtain a linear integrodifferential heat-conduction equation 

c4 + f~ (s) ~ (x, t - -  s) ds = r (s) Ox-- 7 -  8 (x, t - -  s) ds. 
0 0 

(36) 

We look for a solution to this equation in the form of damped plane harmonic waves with fre- 
quency m and the following dispersion relation for the wave velocity v and damping factor 

results : 

2co Ig (co)l (37) 
v~ (co) = 

lc + ~(o)) I  ( I  - -  sin (v  (co) - -  tO (co))) 
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1 + sin (~ (~) - -  ~ (o)) [ ( ~ )  = - -  
o (~) ~0s (v (~) - -  r (~)) (38 )  

where  ~(~) = ~c(~)  -- i ~ c ( ~ ) ;  ~(~) = ~c(~)  -- i S c ( ~ ) ;  9 ( ~ )  = a rg  ~ ( ~ ) ;  , ~ ( ~ ) = a r g ( c + ~ ( ~ ) ) ;  and 
~s and ~s are the Fourier sine formations of ~ and 8, in analogy with (35). 

We consider the sign of the damping factor (38). It is known that in a viscoelastic 
medium the thermodynamic restrictions on the stress relaxation function analogous to (35) re- 
quire that the damping factor of acoustic waves be positive. The analogous exclusion of tem- 
perature waves with growing amplitude in the case considered here follows from (35) for 8 = 0. 
However, in the general case (8 #0), this result cannot be proven, and the counterexample 
discussed below shows that the proof is impossible. Actually, the sign of the damping factor 
~, as is clear from (38), is determined by cos(~--~) which, using standard trigonometric 
transformations and the properties of the Fourier transform, can be represented as follows: 

cos (,,, (o,) - ,~ (co)) = [(c + f~ (o) - Jp', (co)) ~r (,o) + co-#~ (o,)&, (,,,)] 

We consider now functions a and 8 i of the following form 

pt = xfioe-S/~ , 

I~(~)1 Ic + ~" (~)1 
(39) 

(40) 
ct is) = a~ sin 2 + sin~ 2 s  ' _ 2 sin 2 -~ -  

SZ z ' 

where ao and 80 are positive constants and x > 0 and T > 0 are certain characteristic times. 

The Fourier cosine transforms of these functions will have the forms [15] : 

fro (o )  = 

- - i  ~o T2 
Pc (~ )  = , (1 + x~2) 

=o Tz ~-- for ~6 T '  T 

(41 )  

It is easily seen that both of these functions are nonnegative for any m 90 and, according 
to the lemma to Theorem i, this means that the relaxation functions (40) are thermodynamical- 
ly admissible. But the Fourier sine transforms of the relaxation functions (40) are [15] 

"~(~0)=. P ' ~  , 
(1 + ~2~z) 

+ ( o +  - -  4T ) l n ] o  4 In - -  o - -  . Io+ l I 
With the help of (41) and (42), we calculate (39) for fixed frequency ~0 = I/T: 

COS 
I [~o ~2 ~oT I n (  52"2~ 

~2 4 2 t6 ) < 0. (43) 

Because the sign of the damping factor (38) is determined by the sign of this cosine, it fol- 
lows that, at frequency ~o = l/T, temperature waves with increasing amplitude propagate in 
this case. Such waves are not observed in experiment. Moreover, the existence of special 
frequencies at which temperature waves grow in time would be unphysical because then equilib- 
rium thermal fluctuations would grow at these frequencies, and this would lead to instability 
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of theequilibrium state. Therefore, the possibility of growing temperature waves must be 
excluded, in our view. If we accept the natural point of view that growing temperature waves 
should be excluded by the thermodynamics, then it follows from our results that the Clausius-- 
Duhem inequality does not give a complete set of thermodynamic restrictions. 

NOTATION 

c, instantaneous volumetric heat capacity; e, internal energy density; G, inverse tem- 
perature gradient; q, heat flux; r, power density of the internal heat sources; v, velocity 
of temperature waves; u and 8, relaxation functions for the heat flux and internal energy; 
8 i, integral relaxation function for the internal energy; n, entropy density; 8, absolute 
temperature; O, inverse of the absolute temperature; ~, temperature wave damping factor; ~, 
thermodynamic potential. 
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